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Computer simulation of chiral liquid crystal phases 
I. The polymorphism of the chiral Gay-Berne fluidT 

by R. MEMMER* and H.-G. KUBALL 
Fachbereich Chemie, Universitat Kaiserslautern, 

D-67663 Kaiserslautern, Germany 

and A. SCHONHOFER 
Technische Universitat Berlin, D-10623 Berlin, Germany 

(Received 5 January 1993; accepted 10 May 1993) 

We report the results of computer simulation studies for a bulk system com- 
posed of chiral particles interacting via the Gay-Berne potential and an additive 
chiral potential. Using Monte Carlo (MC) simulations in the NVT ensemble, the 
chirality-temperature plane of the phase diagram was studied at different points by 
a variation of the chirality parameter c describing the strength of the chiral 
potential. Additionally to the well-known isotropic, nematic and smectic phases of 
the Gay-Berne fluid, we localized regions of cholesteric phase. For large values of 
the chirality parameter we also observed blue phases. Furthermore, when starting 
from a cholesteric phase and decreasing the temperature at constant c, we obtained 
a phase region showing characteristics of the recently discovered helical smectic A* 
phase. All phases have been characterized by correlation functions, order para- 
meters, and visual representations of selected configurations. All results of the 
simulation are limited by the small system size of N = 256 molecules and the use of 
periodic boundary conditions. 

1. Introduction 
The computer simulation of liquid crystals gains more and more importance, 

favoured especially through the rapid development of computer hardware which 
enables the simulation of systems with increasing complexity [ 11. The first simulations 
nave been restricted to the study of lattice models, for example, the Lebwohl-Lasher 
model [2]. A lot of recent work was carried out, for example, by Frenkel et al. [3-51, in 
order to investigate fluids composed of non-spherical hard body molecules, i.e. 
simulations related to Onsager’s model [6 ] .  Nowadays, however, the results of 
simulations using more realistic atom-based models, including total translational and 
rotational degrees of freedom and intramolecular flexibility, have been reported, as in 
the case of the molecular dynamics (MD) studies of Wilson and Allen [7,S]. 

A model which includes both anisotropic short range repulsive, as well as 
anisotropic long range attractive interactions, without being restricted by the 
extremely time consuming complexity of atom-based models is provided by a model 
potential introduced by Gay and Berne [9] as a modification of the gaussian overlap 
model generalized to a Lennard-Jones form [lo]. This potential has been extensively 
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346 R. Memmer et al. 

studied during the past years as a model system for liquid crystals, beginning with 
Luckhurst et al. [ll-141, and by De Miguel et al. [15,16], investigating their isotropic, 
nematic and smectic phases. 

In spite of these successful simulations of nematic and smectic liquid crystal phases, 
relatively little work has been published about the simulation of chiral phases (see for 
instance [17]), although chirality generates, in addition to cholesteric phases a lot of 
phases with complex structures [18], as in the case of the different blue phases [19] or 
even the recently discovered helical smectic A* phase [20]. The aim of our study is to 
investigate the influence of chirality on liquid crystal phases by performing MC 
simulations on model systems based on the Gay-Berne potential and taking into 
account a chirality-producing potential term. 

2. Chiral model potential 
The intermolecular interactions between two chiral molecules i and j separated by 

an intermolecular vector r with orientations denoted by Ri and Rj respectively, are 
described here by the pair potential 

(1) 

where a and c measure the strength of the achiral interaction potential U ,  and the chiral 
interaction potential U,, respectively. The additive form is chosen for reasons of 
computational simplicity. 

U(R, Rj, r) = aU,(R, Rj, r) + cU,(R, Rj, r), 

The achiral interaction potential U ,  is the Gay-Berne potential [9] 

U,(R, Rj, r) = Ua(Qi, Q j ,  r) 

Jj], (2) {( Y- a(Q, Q j ,  P) + g o  y2 - ( r  - a(*,, Q j ,  P)+ a0 
00 0 0  =4&(Q,, Q j ,  i )  

where 6 ,  Qj are unit vectors describing the orientation of two rotationally symmetric 
particles. i denotes the unit vector parallel to r and r = IrI the molecular separation. 

The explicit expressions for the orientation-dependent parameters a(Q, O j ,  i )  and 
e ( Q ,  Oj ,  P) are given by 

and 

&(tii, Q j ,  ?)= & o [ & ( Q ,  Qj)]V[&’(Qi, oj ,  ?)IF, 

&(ai, aj)= [l -X2(Qi-Qj)*]-1’2, 
with 

and 

(i.Qi+3*Qj)2 (3.Qi-P.Qj)2 
&’(Qi, Q j ,  P)’ 1 -(x‘/2) 1 + x’(b,*Q,) + 1 - x’(Q,-Q,) 

The parameters 

and 
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Computer simulation of chiral LC phases 347 

are related to ge/ci,, reflecting the shape anisotropy and to &,I&,, reflecting the 
anisotropy in the well depth comparing the end to end (e) and side by side (s) 
configuration. These functions have been discussed in detail by Luckhurst et al. [12], 
who introduced a model nematogen and identified its different phases by MD 
simulations. 

The chiral interaction potential U ,  must be pseudo-scalar and is additionally 
chosen to be invariant against the substitution Qi+ - Q i  or hj-+ - Q j  (head-tail 
symmetry). The simplest expression with these properties which can be formed from the 
three unit vectors Q,, a ,  and P is [(hi x aj).P] (Qi-fij). A separation-dependent factor, 
chosen for computational convenience to be of the Gay-Berne type, is used with the 
exponent 7. (A term r-’ [(a, x d j ) -  P] (a i*  Q j )  also results in the multipole expansion of 
the interaction energy of two chiral molecules [2l, 221. It is worth mentioning that 
results similar to those discussed in the following sections can be obtained independ- 
ently of the exponent chosen for the separation-dependent factor as tested by us using 
the exponent 11.) We arrive thus at the expression 

U,(Q,  Qj, r) = U,(O, Q j ,  P) 

[(Q, x Q j ) .  31 (ai. aj). C O  

r - o(Q,  0 ,  3) + go 
=4@, i I j ,P) (9) 

In order to illustrate the influence of the chiral interaction potential we show, in 
figure 1, the variation of the scaled potential energy U* = U/EO, and separately its chiral 
and achiral part for a pair of molecules with dependence on the twist angle 6 describing 
the rotation around the intermolecular distance vector r for a selected configuration. 
Contrary to the achiral situation at c=O where, for the parameter values of a rod-like 
molecule given in 5 3, the energetic minimum is at 6 = O  (side by side configuration), at 
c # 0 a tilted orientation is now favoured. The influence of the chirality parameter c on 
the value of the most preferred twist angle is shown in figure 2 in the form of the 
contours of U* in a plane with c and 6 as orthogonal Cartesian coordinates. A change of 
sign of c simply yields a favoured orientation with -6  instead of 6. 

-180 -120 -60 0 60 120 180 

6 
Figure 1. The dependence of the scaled energy on the twist angle S between the unit vectors 

0 ,  and 0 ,  for two molecules separated by r*=r /a ,=13  with B , l r  and B2Lr. 
U* =aU,* +cU,* (solid lines), aU: (dashed lines), cU,* (dotted lines). The potential 
parameters were given the values used in the MC simulations performed with a constant 
value of a= 1. (a) c =  1.0; (b) c=2.0. 
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1 

c o  
- 1  

-2 

-3 

-4 

- 5  
-150 -100 -50 D 50 100 150 

b 
Figure 2. Energy contours for the interaction between two molecules with dependence on the 

chirality parameter c and twist angle 6 for situations as described in figure 1. Following the 
arrow from left to right, thecontours refer to values of U* decreasing from -0.1 to - 1-0 in 
steps of 0.1. The intersections at c =  1.0 and c=2.0 are shown in figures 1 (a) and (b), 
respectively. 

3. Computational details 
We studied the influence of chirality by investigating a system of N = 256 molecules 

in a cubic simulation box using normal Metropolis Monte Carlo technique in the NVT 
ensemble [23,24]. Cubic periodic boundary conditions, nearest image summation and 
a spherical cut-off have been used. In the following, scaled units will be used: scaled 
temperature T* = k,T/EO, scaled density p* = N cr;/V, scaled energy U* = U / E ~  and 
scaled distance r* = r/cr,. The parameter values (cre/cS = 3, E J E ,  = l/5,,u = 1, v = 2) and the 
simulation conditions (p* =0-30, cut-off at r* =0.38) have been taken from the M D  
simulation of Luckhurst et al. [12]. At each cycle, for each molecule, random 
translations and rotations were performed in combination. The rotation was applied as 
proposed by Barker and Watts [25] ;  the sizes of the rotational and translational moves 
were adjusted to give an acceptance rate of 50 per cent. All required random numbers 
have been created using the NAG library routine GO5CAF [26]. 

4. Calculation of order parameters 
During the production runs the two second rank order parameters, ( P 2 )  and (C), 

characterizing a biaxial phase composed of rotationally symmetric molecules have 
been calculated similarly to [27]. They are given in terms cf orientational distribution 
coefficients 

defined analogously to 1281, where R comprises the eulerian angles a, p, y between the 
space-fixed xi and the molecule-fixed x i  coordinate system; aij are the elements of the 
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Computer simulation of chiral LC phases 349 

orthogonal transformation matrix from the xi to the xi and f (a) describes the 
orientational distribution function averaged over the simulation box with respect to its 
positional dependence. The orientational distribution coefficients of equation (10) are 
thus the mean values over the box of the local coefficients (see Appendix). 

For the calculation, the molecule-fixed x3 axis is chosen parallel to Q i  and the 
symmetric orientational distribution tensor g33kl is computed after each cycle for the 
present configuration according to the discrete formulation of equation (lo), 

by averaging over all N molecules in the simulation box. 

the eigenvalues g:3ii ( i =  1, 2, 3) are arranged in a way to satisfy the relations 
In order to identify the director in the laboratory frame, g33kI is diagonalized and 

and 

where the index* indicates the reference to the principal axes of g33kl. It should be 
mentioned that the index* as introduced in [29], as well as used in this context, denotes 
the reference to appropriately chosen molecule-fixed xi and space-fixed xi coordinate 
systems where all tensors g i i k l  ( i  = 1,2,3) and g i j k k  ( k  = 1,2,3) are diagonal. In the case of 
uniaxial phases, as discussed in [29,30], this is obtained by the choice of the space-fixed 
xi axis parallel to the optical axis, which as a consequence gives diagonal tensors 
giikl(i  = 1,2,3) followed by the simultaneous diagonalization of g i j 3 3 ,  g i j Z 2 ,  and g i j l  1; 

analogously here, the choice of the molecule-fixed x 3  axis, parallel to the symmetry axis 
of the rotationally symmetric molecule leading to diagonal tensors g i j k k  ( k  = 1,2,3) and 
the subsequent simultaneous diagonalisation of g 3 3 k l ,  g 2 2 k l ,  and g1 I k l ,  gives this 
extraordinary result. The director A is defined here by the eigenvector corresponding to 
the eigenvalue ~ 3 ~ ~ ~ .  The order parameters defined by 

( P z )  =q(3g:,,, - 1) = (3 (3 cos2 p - l)), 
and 

can now be calculated. 
The additional requirement g:322 2 ~ 4 3 1 ~  a0 causes a definite hierarchy of all 

eigenvalues and restricts the order parameter ( C )  to positive values. It should be 
mentioned that in the case of biaxial phases with differences g:333-g3322  and g1$322 

-g:31 (related to y:333 2 9 3 3 2 2  1) of comparable magnitude, a director 
fluctuation can be caused during a simulation by this algorithm which then should be 
altered. Then a consideration of all three eigenvalues may be useful in this case. 

For a homogeneous orientational distribution in the box, i.e. for nematic phases, 
the order parameter ( P 2 )  is equal to the Saupe order parameter. For inhomogeneous 
phases as, for example, the cholesteric phase, ( P 2 )  has a different meaning. If only 
segments of a multiple of p / 2  are considered, p being the pitch, then ( P 2 )  describes the 
local order with respect to the helical axis (see Appendix). Using the arrangement 
described above ( P 2 )  should as usual be zero in an isotropic phase, apart from finite 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



350 R. Memmer et al. 

size corrections. For a homogeneous phase, ( P z )  increases to its maximum value of 
( P z )  = 1 if the molecules are arranged with their axis Qi more and more parallel to the 
director, and decreases to its minimum value of ( P z ) =  -0.5 if the molecules are 
arranged with their axis Qi more and more perpendicular to the director. For each value 
of ( P z ) ,  the biaxiality parameter (C) can generally vary between bounds according to 
the order triangle [30], defined here with ( P z )  and ( C )  as orthogonal Cartesian 
coordinates, which is suitable to describe such biaxial phases. 

5. Simulation of achiral systems 
In order to check our MC program and to obtain suitable well-equilibrated starting 

configurations for the simulation of chiral systems, we performed a simulation run 
under conditions comparable to the MD simulations [12]. Starting with an isotropic 
system at a scaled temperature T*=3.0, we cooled the system down by steps 
AT*=0.25 to T* =0.25, while each subsequent run was started from the preceding 
final configuration. At each temperature, an equilibration run about 40 kc (1 kc denotes 
1000 attempted moves per particle) was followed by a production run about 80 kc. 
Additionally, the simulation runs were operated on heating up the system. In figure 3 
we show the calculated order parameter values together with the values obtained by 
Luckhurst et al., using MD [12], as a function of the scaled temperature. The good 
agreement of the MC and MD results and the well-known behaviour of the Gay-Berne 
fluid is obvious: on cooling, spontaneously ordered states appear, characterized as 
nematic and smectic phases by correlation functions and visualizations of selected 
configurations given in detail elsewhere [12,16,31]. The phase biaxility ( C )  was found 
to be negligible for all simulated systems. 

1 .o 

0.8 

L. 
e, 

2 o'6 
3 a 
& 0.4 

2 
0.2 

0.0 
0.0 0.5 1 .o I .5 2.0 2.5 3.0 

scaled temperature T* 
Figure 3. The order parameters ( P z )  (squares) and ( C )  (circles) for the achiral system (c = 0) as 

functions of the scaled temperature T*. Filled symbols joined by solid lines denote results 
of runs progressing from high to low temperature; open symbols joined by dashed lines are 
results of runs from low to high temperature. Additionally, MD results for ( P 2 )  (triangles) 
are given as taken from [12]. All order parameters have been calculated using 
9 3 3 3 3  2 g 3 3 2 2  2 9331 1' 
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6. Simulation of chiral systems 
In order to investigate the influence of chirality, the phase diagram of the chiral 

Gay-Berne fluid in the chirality-temperature plane was analysed along two selected 
intersections: sequences of runs along the isotherm T* = 1.50, by variation of the 
chirality parameter c, and along the isochiral c = 0.80, by variation of temperature, were 
performed. Each run was started from the final configuration of a simulation at a 
nearby value for the chirality parameter or temperature respectively. In order to check 
against metastability, the whole simulation sequences were repeated in the opposite 
direction. Usually, at each point, an equilibration run of 100 kc was followed by a 
production run of the same length. 

6.1. Variation of chirality along an isotherm 
Starting from the obtained nematic phase at T* = 1.50 with c = 0, the chirality 

parameter was increased along this isotherm by steps Ac = 0.1 up to c = 2.0. The values 
obtained for the average chiral energy contributions are given in figure 4 as functions of 
the chirality parameter c. Significant changes allowing an approximate localization of 
resulting phase transitions appear. A first phase transition is obvious in the region 
0.6 6 c 6 0.7; on increasing the chirality parameter, a second phase transition takes 
place in the region 1.0 6 c 6 1.1. It is quite possible that much longer runs will reveal the 
metastable character of some state points close to the transition which then will occur 
at even lower values of c as indicated by the results of the runs with decreasing chirality. 
Additionally further phase transitions are indicated at high values of the chirality 
parameter which are still under investigation and therefore not discussed in the 
following. First information about the nature of the phases is given by the values 
obtained for the order parameters ( P 2 )  and ( C )  shown in figure 5 as functions of the 
chirality parameter. 

I I I I 
0.0 0.5 1 .o 1.5 2.0 

chirality parameter c 
Figure 4. The chiral energy contribution ( U y )  (triangles) as a function of the chirality 

parameter c along the isotherm T* = 1.50. Filled symbols joined by a solid line denote 
results of runs progressing from low to high chirality parameter; open symbols joined by a 
dashed line denote results of runs from high to low chirality parameter. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



352 

0.8 - 

0.6 - 
k 
a, * 0.4- 

cd 
2 
g 0.2- 

-g -0.0- 
L 
a, 

-0.2 - 

-0.4 - 

R. Memmer et al. 

I .0 

J 
I I I I 

0.0 0.5 1 .o 1.5 2.0 
chirality parameter c 

Figure 5. The order parameters (P2) (squares) and (C) (circles) as functions of the chirality 
parameter c along the isotherm T* = 1.50. Filled symbols joined by solid lines denote 
results af runs progressing from low to high chirality parameter; open symbols joined by 
dashed lines denote results of runs from high to low chirality parameter. 

For low values of c, the order parameter ( P 2 )  ~ 0 . 8  indicates a favoured parallel 
orientation of the unit vectors O i  with respect to the director, i.e. the usual behaviour of 
nematics. The phase biaxiality of the system is negligible as shown by the very small 
values of ( C )  in comparison to ( P 2 ) .  At the first phase transition, the favoured 
orientation has dramatically changed: now for an intermediate chirality parameter, an 
orientation of the unit vectors Oi perpendicular to the director is preferred as indicated 
by values ( P z )  E -0.4 close to the minimum value ( P z )  = -0.5. The apparent phase 
biaxiality is again weak, but increased. For high values of c again strong changes 
appear. The value of ( P 2 )  is fluctuating around zero, indicating the isotropic character 
of the phase. A visualization of the arrangement of the molecules using the final 
configuration of selected production runs allows, in a simple way, a further 
characterization to be made. In figure 6 we show images of the two phases obtained by 
runs with increasing chirality parameter: the snapshot related to c = 0.9 shows the 
characteristics of a cholesteric phase; on the contrary at c = 1.3 features of a blue phase 
can be seen. 

Characteristic for the cholesteric phase (figure 6, left) is the periodic change of the 
favoured molecule orientation along the helical axis given here by xi, as illustrated in 
figure 6 (b) and (c) and the isotropic distribution of the molecular centres in the xi, xi- 
plane, whereas always an orientation gerpendicular to the helical axis is preferred, as is 
obvious in figure 6(a). 

The similarity of the blue phase obtained (figure 6,  right) to the model of BPI1 
[19,33,34], given for comparison in figure 7, is evident: the images show the 
characteristics of double twist cylinders in a cubic arrangement. 

In order to elucidate the structural features of the phases appearing, a longitudinal 
orientational pair correlation function of rank two defined by 

~ 2 ( r t )  = (Pz(c0~ Jij(rt))), (15) 
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Computer simulation of chiral LC phases 353 

(4 
Figure 6. Final configurations of the production runs at c = 0.9 (left) and c = 1.3 (right). Each 

molecule is represented as a line in the shown projections of the system into the (a) x;, x i  
plane, (b) xi, x i  plane, and (c) xi, x i  plane created with the molecular modelling program 
QUANTA [32]. In order to yield a better impression of the arrangement, the central 
simulation box (0) is surrounded by its identical images as given by the use of periodic 
boundary conditions. 

(4 (b) (4 
Figure 7. Theoretical model of BPII: (a) top view of a double twist cylinder; (b)  side view of a 

double twist cylinder; (c) three dimensional arrangement (figures from [34]). 
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M 
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0.5 -_ 
0.0 - 
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0.0 Oe5 7 
c=1.30 

I I 

I 

c=o.oo 
0.5 
0.0 -j 

c=0.90 

N 

-0.5 c=l.30 
0.5 
0.0 

-0.5 1 
0 2 4 

Figure 8. Longitudinal orientational pair correlation functions (a) g2 ( r t )  and (h) g; ( r t )  and 
their dependence on the chirality parameter: c = 0.0 (nematic); c = 0.9) cholesteric); c = 1.30 
(blue phase). In the case of the blue phase, r;i was taken as the distance in the direction of 
the normal vector of one arbitrarily chosen box face. 

was calculated, where P ,  is the second order Legendre polynomial and dij(r;i) denotes 
the angle between Qi  and Q j  of two selected molecules separated by a scaled distance r;l; 
in the direction parallel to the director. This correlation function depends on both 
Eulerian angles OL and 8; therefore the similar function 

g!Ar;l;)= (P~(cos 4jCr;l;))) (16) 

independent of p and thus of the degree of order given by ( P 2 )  was evaluated where 
now S i j  is the angle between the projections of Qi and Q j  into the plane perpendicular to 
the director. 

For all three analysed phases the functions given in figure8 show significant 
differences; especially evident is the behaviour for the cholesteric phase. Whereas for 
the nematic phase g 2  (1-1) and gi,  ( r l )  are constant over the whole range, for the 
cholesteric phase they vary with r l .  They change monotonously from their maximum 
values close to 1.0, indicating a preferred orientation with a small twist angle for 
molecules separated by small values of r f  to their minimum values close to -0.5 for 
molecules separated by half of the box length in the direction parallel to the director, 
indicating a preferred orientation of these molecules perpendicular to each other. The 
functions show additionally that only a part of a helix with the length of the half pitch 
has been formed inside the simulation cell. In the case of the blue phases, the functions 
obtained for the three different normal vectors of the box show the same behaviour as 
given here and are therefore not shown separately, documenting the equivalence of 
three distinguished orthogonal directions in the case of BPII. 

6.2. Vuriutt’on of temperature along an isochiral 
Using the isotropic phase obtained at T* =3.0 with c=O as the initial configur- 

ation, the temperature is now reduced by steps AT* = 0.25 down to T* =0.25 along the 
isochiral with c = 0.8. With decreasing temperature, the orientation perpendicular to 
the director is favoured more and more as indicated by the order parameter ( P 2 )  given 
in figure 9. Again helical phases appear, as illustrated in figure l o @ )  by the behaviour of 
the longitudinal orientational pair correlation functions g 2  ( r ; )  and g ;  (2; ) .  But now, 
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Figure 9. The order parameters ( P 2 )  (squares) and (C) (circles) as functions of the scaled 
temperature T* along the isochiral c=O% Filled symbols joined by solid lines denote 
results of runs progressing from high to low temperature, open symbols joined by dashed 
lines denote results of runs from low to high temperature. 

0 

Z l  
v 
M 

0 

1 

0 

1 

Figure 10. Correlation functions and their dependence on the scaled temperature T* at c = 0.8: 
(a) longitudinal orientational pair correlation functions: g 2  ( r t )  (solid lines), g; ( r t )  
(dashed lines); (b)  radial distribution functions. 
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1 2 3 4 

6 7 8 9 
(4 

5 

Figure 11. Final configuration of the production run at c = 0.8 and T* =0.75. The images (a) 
and (b) show the same snapshot only rotated by 90" against each other around the 
horizontally oriented helical axis. The central simulation box is surrounded by its identical 
images in the direction of the helical axis. Additionally, projections of the simulation box 
(D) surrounded by its identical images (c) and of volume segments chosen perpendicular to 
the helical axis (e) into the xi, x; plane are given. For each volume segment a local director 
has been calculated according to $4, of which the normalized projection into the xi, x i  
plane is shown by a heavy line. In ( d ) ,  the angle of rotation 4 of the projections of the so- 
defined local directors is given as a function of the volume segment number. 

P 

Figure 12. Model for the helical smectic A* phase (figure from [36]).  
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additionally increasing positional correlations are obvious as shown in figure 10 (b) by 
the radial distribution function g(r*). In figure 1 1 ,  a configuration obtained with 
c = 0 8  and T* = 0.75 is shown which demonstrates the appearance of a spiraling layer 
order, typical for the model of the helical smectic A* phase, given, for comparison, in 
figure 12, as predicted by Renn and Lubensky [35] and discovered by Goodby et al. 
C20l. 

7. Discussion 
In the preceding sections, we have described the results of our Monte Carlo studies 

for a system of chiral particles with interactions described by the Gay-Berne potential 
and an additive chiral potential, a system for convenience denoted as chiral Gay-Berne 
fluid. This system shows different chiral phases, as temperature and chirality 
parameter are varied, which have been characterized as cholesteric, helical smectic and 
blue phases by the use of correlation functions, order parameters and visualizations of 
selected configurations using computer graphics. These phases have to be discussed 
here especially under the restrictions given by the applied periodic boundary 
conditions and the small system size, respectively. 

In the case of the cholesteric phase, we have found that, independent of temperature 
and chirality parameter values, a part of a helix with a length of a half pitch was always 
formed inside the simulation box, while the helical axis was parallel to one of the 
normal vectors of the cubic box. Both facts can be easily understood considering the 
boundary conditions: in order to harmonize with its own periodic images, a repeatable 
part of the helix must fit exactly into the simulation box. This requirement is fulfilled by 
all parts of a helix with length n(p/2) where p denotes the pitch and n stands for a 
positive integer. Due to the small system size, only helices with n = 1 have been formed 
in such a way as to obtain the maximum pitch p = 2L, i.e. avoiding oblique orientations 
of the helical axis in the cubic simulation box of length L. These boundary effects 
simultaneously explain the threshold value obtained for the chirality parameter 
necessary for the formation of a cholesteric phase, as found by simulations along an 
isotherm with increasing chirality parameter. For values of the chirality parameter 
below the threshold value, a cholesteric phase would be favoured with a pitch greater 
than twice the box length, a situation prevented by the boundary conditions used. The 
cholesteric phases obtained, therefore, represent in general no undisturbed helical 
structures. It can be expected that by analogy with the case of the Can0 wedge, where as 
a function of the distance between the two surfaces undisturbed helical structures have 
compressed or stretched helical structures as neighbours, these situations depend here 
on the given box size, fixed by the number of molecules under investigation. 

Simulations of larger systems, therefore, should yield a systematic lowering of the 
threshold value. Simultaneously, the variation of the molecule number at  constant 
values of density, temperature and chirality parameter should allow the detection of the 
undisturbed helical structure, i.e., the pitch due to the selected parameters, by searching 
for the minimum of energy. The use of a rectangular simulation cell instead of a cubic 
box should help to reduce the enormous amount of computational time necessary for 
such investigations. In order to overcome these problems and to analyse especially the 
temperature dependence of the helical pitch N p T ,  simulations allowing a change of box 
size and hence the formation of undisturbed helical structures would be preferable to 
NVT simulations. A very interesting possibility could be the use of a special twisted 
simulation cell, as pointed out by Yoneya and Berendsen [37J, which would allow 
helical structures with a pitch much longer than that fixed by the box size. 
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In principle, these considerations are also valid for the helical smectic phase. For a 
detailed analysis of its structure and especially of the order in the smectic layers, larger 
system sizes are required. The restrictions due to the periodic boundary conditions can 
be seen even more strongly in the case of the blue phase. Here the axes of all double twist 
cylinders are constrained to the normals of the cubic simulation cell, allowing in this 
way the formation of a suitable unit cell which fits well inside the simulation box. The 
region of existence of the blue phase (until now proved only by the visual impression of 
selected configurations in common with values of the order of parameter ( P 2 )  close to 
zero calculated with the algorithm described in §4 and not by suitable correlation 
functions) should possibly move to higher values of the chirality parameter if larger 
systems are investigated. According to many experimental results [38], the formation 
of blue phases is favoured in systems with a very small pitch, conditions which are given 
here in advance by the chosen boundary conditions. 

Considering that only two parameters of the model-temperature and chirality 
parameter-have been changed in this study, the rich polymorphism of the chiral 
Gay-Berne model is remarkable and should give reasons for further investigation in 
spite of the above mentioned restrictions, allowing a more detailed characterization of 
the different phases. Promising aspects consist in a modification of the chiral potential 
used here in order to investigate the phenomenon of induced cholesteric phases by a 
simulation of guest-host systems, in combination with the use of suitable boundary 
conditions. 

Financial support by the Fonds der Chemischen Industrie and generous allocation 
of computer time by the Regionales Hochschulrechenzentrum Kaiserslautern are 
gratefully acknowledged. 

Appendix 
In order to illustrate the meaning of the order parameters calculated according to 

Q 4 and the longitudinal orientational pair correlation function, special situations will 
be treated here. All statements are related to systems consisting of rotationally 
symmetric molecules with the molecule-fixed x3 axis chosen to be parallel to the 
symmetry axis of the molecule. 

(a) Uniaxial nematic phase, where all molecules are oriented parallel to each other: 
( P 2 )  = 1, (C) =0, with ii parallel to the optical axis. 

(b) Uniaxial nematic phase, where all molecules are oriented perpendicular to the 
optical axis: ( P 2 ) =  -f, <C)=O, with ii parallel to the optical axis. 

(c) Cholesteric phase: The values of ( P 2 ) ,  ( C ) ,  and the orientation of ii depend on 
the segment of the helix taken into account by the calculation. However, 
segments of a multiple of p / 2  can be treated as a special case. Starting from the 
local orientation distribution function f(z ,n)  with z in the direction of the 
helical axis, one obtains local orientational distribution coefficients gijkl  (z) ,  
Averaging these coefficients over segments of a multiple of p / 2  yields 
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i.e. g3333 =g3333 (zo). Therefore, (C) =0, and in the case of a locally uniaxial 
system, the order parameter ( P 2 )  describes the local order with respect to the 
helical axis which is parallel to fi. If all molecules are oriented perpendicular to 
A, one gets again ( P 2 )  = -3. 

In order to distinguish between (b) and (c) is it suitable to look at the longitudinal 
orientational pair correlation function g; (r l ) .  Whereas in (b) g; ( r l )  =$ is independent 
of r t ,  in (c )  this function varies according to g; (r;)  =3 ( 3  cos2 [(2n/p)rt]  - 1) if, in each 
layer perpendicular to the helical axis, all molecules are oriented parallel to each other. 
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